Effect of Turbulence on Power for Bend-Twist Coupled Blades
نویسندگان
چکیده
Bend-twist coupling of wind turbine blades reduces the structural loads of the turbine but it also results in a decrease of the annual energy production. The main part of the power loss can be mitigated by pretwisting the blade, but some power loss remains and previous studies indicate that it might be related to the dynamic response of bend-twist coupled blades in turbulent flow. This paper contains estimations of the power curve from nonlinear time simulations, a linear frequency domain based method and a normal distribution weighted average method. It is shown that the frequency domain based estimation is highly dependant on the validity of the linearized model, thus estimations are poor for operational points close to rated wind speed. The weighted average method gives good results if an appropriate standard deviation is known a priori. The nonlinear time simulations show that changes in power due to turbulence are similar for coupled and uncoupled blades. Power gains at low wind speeds are related to the curvature of the steady state power curve. Losses around rated wind speed are caused by the effects of controller switching between partial and full power operation.
منابع مشابه
Performance Prediction of a Free Stream Tidal Turbine with Composite Bend-Twist Coupled Blades
Free stream tidal turbines are a source of growing interest in the marine renewable energy field. Some designs that use an actuated mechanism to control individual blade pitch, as the tidal current varies and even during a revolutionary cycle, face the challenge of ensuring high reliability under the loads imposed on the device in the harsh sub sea environment. Adaptive materials have been used...
متن کاملBend-twist coupling potential of wind turbine blades
In the present study an evaluation of the potential for bend-twist coupling effects in wind turbine blades is addressed. A method for evaluation of the coupling magnitude based on the results of finite element modeling and full-field displacement measurements obtained by experiments is developed and tested on small-scale coupled composite beams. In the proposed method the coupling coefficient f...
متن کاملAerodynamic Optimal Design of Wind Turbine Blades using Genetic Algorithm
Wind power has been widely considered and utilized in recent years as one of the most promising renewable energy sources. In the current research study, aerodynamic analysis of the upwind three-bladed horizontal axis turbine is carried out using blade element momentum theory (BEM), and a genetic algorithm (GA) is applied as an optimization method. Output power generation is considered as an obj...
متن کاملDevelopment of High Performance Composite Bend-twist Coupled Blades for a Horizontal Axis Tidal Turbine
An adaptive textile composite, sometimes referred to as a smart material or intelligent material, is a structure tailored to exhibit desirable elastic deformation behaviour not necessarily proportional to the imposed load. An example of such a structure would be a box beam so tailored that an imposed cantilever load results in twisting as well as bending, although no torsional load was imposed,...
متن کاملAerodynamic optimal design of wind turbine blades using genetic algorithm
Wind power has been widely considered and utilized in recent years as one of the most promising renewable energy sources. In the current research study, aerodynamic analysis of the upwind three-bladed horizontal axis turbine is carried out using blade element momentum theory (BEM), and a genetic algorithm (GA) is applied as an optimization method. Output power generation is considered as an...
متن کامل